Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 4 of 4 results
1.

An optogenetic method for the controlled release of single molecules.

violet PhoCl CHO-K1 CV-1 EL4 HEK293T Signaling cascade control Organelle manipulation
bioRxiv, 17 Sep 2023 DOI: 10.1101/2023.09.16.557871 Link to full text
Abstract: We developed a system for optogenetic release of single molecules in live cells. We confined soluble and transmembrane proteins to the Golgi apparatus via a photocleavable protein and released them by short pulses of light. Our method allows for the controlled delivery of functional proteins to cytosol and plasma membrane in amounts compatible with single molecule imaging, greatly simplifying access to single molecule microscopy of any protein in live cells. Furthermore, we could reconstitute cellular functions such as ion conductance by delivering BK and VRAC ion channels to the plasma membrane. Finally, we could induce NF-kB signaling in T-Lymphoblasts stimulated by IL-1 by controlled release of a signaling protein that had been knocked-out in the same cells. We observed light induced formation of functional inflammatory signaling complexes that could trigger IKK phosphorylation in single cells. We thus developed an optogenetic method for the reconstitution and investigation of cellular function at the single molecule level.
2.

Improved Photocleavable Proteins with Faster and More Efficient Dissociation.

violet PhoCl HeLa Transgene expression Cell death
bioRxiv, 10 Dec 2020 DOI: 10.1101/2020.12.10.419556 Link to full text
Abstract: The photocleavable protein (PhoCl) is a green-to-red photoconvertible fluorescent protein that, when illuminated with violet light, undergoes main chain cleavage followed by spontaneous dissociation of the resulting fragments. The first generation PhoCl (PhoCl1) exhibited a relative slow rate of dissociation, potentially limiting its utilities for optogenetic control of cell physiology. In this work, we report the X-ray crystal structures of the PhoCl1 green state, red state, and cleaved empty barrel. Using structure-guided engineering and directed evolution, we have developed PhoCl2c with higher contrast ratio and PhoCl2f with faster dissociation. We characterized the performance of these new variants as purified proteins and expressed in cultured cells. Our results demonstrate that PhoCl2 variants exhibit faster and more efficient dissociation, which should enable improved optogenetic manipulations of protein localization and protein-protein interactions in living cells.
3.

Engineering Photosensory Modules of Non-Opsin-Based Optogenetic Actuators.

blue cyan near-infrared red violet Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 7 Sep 2020 DOI: 10.3390/ijms21186522 Link to full text
Abstract: Optogenetic (photo-responsive) actuators engineered from photoreceptors are widely used in various applications to study cell biology and tissue physiology. In the toolkit of optogenetic actuators, the key building blocks are genetically encodable light-sensitive proteins. Currently, most optogenetic photosensory modules are engineered from naturally-occurring photoreceptor proteins from bacteria, fungi, and plants. There is a growing demand for novel photosensory domains with improved optical properties and light-induced responses to satisfy the needs of a wider variety of studies in biological sciences. In this review, we focus on progress towards engineering of non-opsin-based photosensory domains, and their representative applications in cell biology and physiology. We summarize current knowledge of engineering of light-sensitive proteins including light-oxygen-voltage-sensing domain (LOV), cryptochrome (CRY2), phytochrome (PhyB and BphP), and fluorescent protein (FP)-based photosensitive domains (Dronpa and PhoCl).
4.

Optogenetic control with a photocleavable protein, PhoCl.

violet PhoCl
Nat Methods, 13 Mar 2017 DOI: 10.1038/nmeth.4222 Link to full text
Abstract: To expand the range of experiments that are accessible with optogenetics, we developed a photocleavable protein (PhoCl) that spontaneously dissociates into two fragments after violet-light-induced cleavage of a specific bond in the protein backbone. We demonstrated that PhoCl can be used to engineer light-activatable Cre recombinase, Gal4 transcription factor, and a viral protease that in turn was used to activate opening of the large-pore ion channel Pannexin-1.
Submit a new publication to our database